

CS 3984 Cloud Software Development

Spring 2017

MeetingScheduler - Group 4

Alexander Martin, alexm118@vt.edu
Erin Kocis, erink13@vt.edu

Jeffrey Shih, jshih11@vt.edu
Jisu You, silven@vt.edu

Patrick Gatewood, pg8wood@vt.edu

Department of Computer Science
Virginia Tech

Blacksburg, Va 24061

 Date: May 2, 2017
 Team Number: 4

Instructor: Dr. Osman Balci

1

Executive Summary
Our team developed a cloud application that enhances coordination amongst a team of
people by improving the process for scheduling and organizing meetings. The
application utilizes user feedback to determine the availability of meeting participants in
order to deduce the optimal potential meeting times for any group of individuals. The
application allows individuals to create meetings, allocate times that work with their
availability and schedules, swiftly invite participants, and finalize meeting plans based
on invitees’ responses. In order to include as much relevant information as possible,
each meeting allows associated files to be uploaded and downloaded, specifies the list
of meeting invitees, and also provides an interactive map focused on the meeting
location.

Accounting for the fact that individuals may have incredibly busy schedules, the cloud
application utilizes email functionality to notify meeting invitees when they’ve been
invited to a meeting, when the meeting owner updates some of the meeting information,
if the meeting owner cancels the meeting, and when the meeting owner finalizes the
meeting time. The email functionality also alerts the meeting owner when a participant
responds to the invitation. This helps no meeting go unnoticed. The application also
introduces a restful web service, exposing our data and allowing for others to utilize it in
their own applications.

A complete list of features implemented is in the list below.

1. Activity Data and CRUD Operations
2. Email reminders for Users
3. Email reminders for Meetings
4. File Upload and Download
5. Google Maps with location pins
6. Member-Only Access
7. Photo Gallery of Users Attending a Meeting
8. Primefaces Calendar
9. Restful Webservices
10. User Account CRUD
11. MySql Database utilizing Many to Many Relationships
12. Materialize CSS Library

2

Table of Contents
Executive Summary 1

Table of Contents 2

1. Software Life Cycle 3

2. Problem Specification 4
2.1 Description of the Problem Context 4
2.2 Cloud Software Features to be Implemented 4
2.3 Database Management System 5
2.4 Complexity 5

3. Requirements Specification 7
3.1 Functional Requirements 7
3.2 Non Functional Requirements 8

4. Architecture 9

5. Design Specification 10

6. Delivered Software Functionality 18

7. Step by Step Instructions for Developing New Features 29
7.1 Calendar - Jeffrey Shih 29
7.2 Utilizing Materialize CSS Library Side Nav - Alex Martin 36
7.3 Utilizing Materialize CSS Parallax - Alex Martin 38
7.4 Login Filter for Members-Only Access - Patrick Gatewood 39
7.5 Collapsable “Card” Interface - Patrick Gatewood 45
7.5 Repeatable Content for Interoperability between JSF Implementations and
PrimeFaces Components - Patrick Gatewood 56

8. Conclusions 59

9. Percentages of Contribution 60

11. Version Control 66

11. Collaborative Project Management 67

12. Meeting Report Forms 68

3

1. Software Life Cycle
A good engineer always develops software by following the life cycle shown below.

A programmer (hacker or ad-hoc developer) develops software by looking at the
problem and directly coding in an IDE. This approach is known as the Build-and-Fix
Approach, which must never be used!

4

2. Problem Specification
Scheduling a meeting is often more difficult than actually holding the meeting itself. The
goal of our cloud application is to simplify the task of coordinating and organizing a
meeting for a group of individuals with different schedules. It is often challenging to
determine when everyone in your meeting is available to meet, which is why our
application allows an individual, a meeting owner, to provide a meeting host which
indicates personal availability timeslots. It also provides a meeting host that highlights
the timeslots that participants have indicated their availability for. By utilizing a strategy
of create, determine, and finalize we are able to enable users to quickly create, respond
to, and finalize meeting dates and times along with other details including meeting title,
description, location, and list of participants.

2.1 Description of the Problem Context
The goal of our cloud application is to tackle the difficulties associated with scheduling a
meeting for a group of individuals. Some of the issues surround how to easily match
people’s schedules to account for when they’re available to make finalizing a meeting
time a smooth experience for the host. This application would have strong uses across
companies and student organizations alike, as almost any group of people could use a
tool such as this to facilitate coordinating the best time to hold a meeting. The
application also allows individuals to provide relevant information and details on a
meeting so that meeting planning process leaves participants prepared for the meeting
when it comes time to meet.

2.2 Cloud Software Features to be Implemented
1. Activity Data and CRUD Operations
2. Email (Email-based notification system to notify when a user takes an action)

a. Email reminders for participants when meeting owner takes an action
b. Email reminders for meeting owners when participants take an action

3. File Upload (photo file) with CRUD operations
4. File Upload and Download
5. Google Maps with location pins
6. Member-Only Access
7. Photo Gallery of Users
8. Primefaces Calendar
9. Restful Webservices
10. User Account CRUD
11. MySql Database utilizing Many to Many Relationships

5

12. Materialize CSS Library for additional front end features

2.3 Database Management System
We have chosen to use a structured MySQL database to store and retrieve information
from. We have created four tables to encapsulate our data. The implemented tables
include User, Meeting, MeetingFile, and MeetingUsers. We utilize a many to many
relationship between users and meetings represented by the table MeetingUsers which
allows us to associate all users with a meeting and all meetings with a user. We store a
large amount of information in our database, including information for a user’s profile,
information associated with meetings such as title, description, potential times, final
time, invitees, location, and host. We then use the middle table MeetingUsers, which
has an entry for each meeting user association, to store a user’s potential availability for
a specific meeting and an indication as to whether or not the user has responded.

2.4 Complexity
Our project involved a lot of complexity in both the database schema and in addressing
the actual problem at hand. Being tasked with a scheduling application, writing an
algorithm for efficiently scheduling meetings for large groups can take on a lot of
complexity. We spent a large portion of our time developing and implementing an
algorithm to aid the meeting host in determining the best possible time to hold any given
meeting. This algorithm pulls in user information on availability and aggregates the data
across all meeting invitees to determine which dates and times are optimal for the
meeting.

When looking at our database schema, we had some complexity added in structuring
our data within a database in order to store all the information that our application
required. One complexity was storing user’s availability from their response to a meeting
invitation. We needed to transform an array of java Date objects into a value to be
stored in our MySQL database. We chose to use a long Varchar string, formed by
transforming the Date array into a comma separated string. This design choice lead to
complexity when handling the data within our java code, since we needed to perform
string operations to write, update, and read the data in this field from our database.

When implementing a calendar for our users to view their meetings in a familiar, simple,
chronological format, we used a primefaces component called ‘schedule.’ This
component had a set of backing java classes called ‘ScheduleModel’ and
‘DefaultScheduleEvent’ that quickly render the calendar. DefaultScheduleEvents would
be added to a ScheduleModel in an overridden loadEvents method so that when the

6

ScheduleModel is returned, all of the added DefaultScheduleEvents would show up on
the calendar. DefaultScheduleEvents required a topic, start, and end times. In our
database schema, we only included start times of meetings because we decided that
end times would not have to be required as meetings rarely have a planned length. And
because the start and end time parameters were Java Date objects, we had to serialize
and deserialize our database String objects. This added minimal complexity by requiring
us to add a default end time which was decided to be an hour after the start. Because
Java Date methods are mostly deprecated and replaced by Java Calendar methods,
there were some Date object manipulations required to create the end time without
serializing and deserializing the start times another time.

User experience across our website was another added complexity. As we started to
finalize features, we realized that what our application was lacking was an identity and
to a lesser extent, a smooth user experience. We imported a third party library to help
us add a more polished and refined look to our application, as well as aid is in providing
a smoother user experience. This library, while greatly improving the overall feel of the
application, did introduce some complications. Since primefaces was our default user
interface library, we needed to mold the two libraries together through cohesive CSS
styling, but on multiple occasions the two libraries conflicted. This required us to spend
significant time researching the problems in order to find solutions. We were forced to
learn javascript and jquery in order to remedy some of the issues we were facing, but
the overall improvement of the application through the use of Materialize made the
increase in complexity worthwhile.

7

3. Requirements Specification
This section will discuss the Functional and Nonfunctional requirements that our cloud
application will be developed.

3.1 Functional Requirements

1. Our application shall be able to create a meeting, given a location, a topic,
a description, a list of people to be invited, and a list of possible times in
which the meeting creator is available.

2. Our application shall be able to display a list of potential times a meeting
can be held to an invited user and receive a list of of times a user can
attend the meeting from that list of potential times.

3. Our application shall allow users to register an account for the website,
given a name, address, security question, security answer, username, and
password.

4. Our application shall allow users to set a profile picture to be displayed on
their profile page and on their side navigation bar.

5. Our application shall allow users to upload a files associated with a
meeting.

6. Our application shall allow users to view and download files associated
with a meeting.

7. Our application shall allow users that created a meeting (meeting owners)
to edit the meeting once it is created.

8. Our application shall allow users that created a meeting (meeting owners)
to delete or cancel the meeting.

9. Our application shall email invited users to a meeting (invitees) when a
meeting is created notifying them of their invitation.

10. Our application shall email invited users to a meeting (invitees) when a
meeting is updated.

11. Our application shall email invited users to a meeting (invitees) when a
meeting is cancelled.

12. Our application shall email invited users to a meeting (invitees) once a
meeting time is finalized by the meeting owner.

13. Our application shall email the owner of a meeting when an invitee
responds to the invitation, indicating their available times.

14. Our application shall give only the meeting owner the ability to check the
number of responses/non-responses, to view the responses themselves,
and to select a meeting time to finalize the meeting.

8

15. Our application shall display all finalized meetings on their respective days
on a calendar.

16. Our application shall support a restful endpoint to allow for people to utilize
our data for third party applications.

17. Our application shall support a meeting to be created with multiple
potential time slots, by indicating a day and time during the meeting
creation process. (is this a repeat of number 1?)

3.2 Non Functional Requirements
1. Our application shall enable users to find their next meeting in less than 3

clicks.
2. Our application shall enable users to respond to a meeting without

needing to navigate through multiple pages.
3. Our application shall allow users to see meeting information for their next

meeting on any given page.

9

4. Architecture

10

5. Design Specification

 1. Header and Footer, common to all web pages.

 2. Homepage

3. Side Navigation Menu

11

4. Sign In Page

12

5. Create Account Page

6. Password Reset Screens

7. Security Question

13

8. Password Change

9. Profile Page

14

10. Meeting Creation

15

11. My Meetings Page Initial Markup Design

16

12. Meeting Response

13. Meeting View

17

14. File Upload

15. View Meeting Location - Google Maps

18

6. Delivered Software Functionality
MeetingScheduler can be accessed at http://venus.cs.vt.edu/group. First, the user must
make an account by clicking the “Create Account” button either in the header or at the

bottom of the screen.

Account creation is identical to that found in CloudDrive, but the form has been stylized.

19

Upon first logging in, the user will be greeted with the landing page. Here, meeting
invitations and upcoming meetings will be displayed to the user. Initially, the user will

20

have no meetings. To create a meeting, the user shall click “Upcoming Meetings” in the
header, and “Meetings I Own” in the exposed sidebar.

21

This link navigates to the Meetings I Own page. Here, the user can perform basic
CRUD operations on meetings. To create a meeting, the user shall click the “Create”
button. This shows the modal window that allows the user to input information about the
meeting. If required input is malformed, the application will display a helpful message.
Note that the user must invite users via username.

22

After clicking “Select Meeting Times”, the user shall input the timeslots that they wish to
open for the meeting. Again, if the input is malformed, a helpful growl message will
display.

Clicking the “Save” button will display the meeting in the datatable. This will send an
email to the invitees via an email sender that runs on a background thread. This sends
the email without hanging the GUI thread, improving the user experience.

23

When an invitee logs in, the new meeting invitation will be shown under their invitations.

Clicking “Respond” shall expand the card and allow the user to select which times they
are available.

Clicking “Submit all selected times” shall submit the response to the owner, and the
owner shall receive an email that an invitee has responded to their meeting. Clicking

24

“Can’t go” will display a confirmation, and upon confirmation will indicate to the meeting
owner that the invitee is unavailable for every time slot.

Still on the invitee’s account, the invitee can now view more information about the
upcoming meeting that was added to their Upcoming Meetings.

If the user is the creator (and therefore owner) of the meeting, an “Owner Actions”
section shall display in the meeting preview.

Here the user can view the times that invitees have indicated they are available.

At any time, the meeting owner may choose to finalize the meeting time by clicking one
of the timeslots.

25

After the meeting has been finalized, the Owner Actions section shall display the final
meeting time, which cannot be changed.

Similar to meeting invitations, the user shall click “See More” to reveal more information
about the selected meeting. This will reveal a variety of features, which will be
discussed individually below.

26

The user can view who has responded to the meeting invitation in the Participants
section.

Scrolling down, the user can view and/or upload files in the Attachments section.

27

The file viewer is more robust than the CloudDrive file viewer: it will determine the file
type and display it accordingly. For instance, unlike in CloudDrive, simply clicking a
video file will play the video file: the user does not have to click and explicit “play MP4”
button.

If the file is a file type that cannot be “viewed” in the traditional sense of the word (i.e. a
.tar file), the application will convey this to the user and allow them to download the file
instead.

28

Below the Attachments section, the user can view the location of the meeting in an
embedded Google Map. Clicking the map will allow the user to interact with it.

Finally, clicking “See Less” shall collapse the card so that it takes up less space on the
page. This is useful should the user wish to view another meeting and does not wish to
scroll through the lengthy meeting card.

Two collapsed meeting cards.

29

7. Step by Step Instructions for Developing New
Features

7.1 Calendar - Jeffrey Shih
The calendar feature we implemented is the ‘Schedule’ component provided by
primefaces. The component itself renders a month, week, and day view with week and
day views also providing hourly dividers. Arrows to scroll forward and back between the
respective unit of time is provided as well as a button to take the user to the current date
and a changing header to fit the current view. The component requires a backing Java
manager in order to load any events within the calendar and to handle any clicks within
the component.

Instructions:

1. Right click the template folder and select New → XHTML... from the pop-up
menu.

2. Name the file Calendar and click Finish to create the Calendar.xhtml file.
3. Copy the code below into the Calendar.xhtml file (the value tag within the

component acquires the ScheduleModel that will be used to grab all events and
place them into the component when rendered).

30

We only process an event select for simplicity and felt that it was the only useful event
that we could process in regards to the calendar.

1. Right click the Source Packages folder and select New → Java Package... from
the pop-up menu.

2. Name the package com.mycompany.managers and click Finish to create the
com.mycompany.managers package.

3. Right click the com.mycompany.managers package and select New → Java
Class… from the pop-up menu.

4. Name the file CalendarManager and click Finish to create the
CalendarManager.java file.

5. Copy the code below into CalendarManager.java

Copy and paste the documented code given below. Carefully study the code,
understand what it is doing, and learn from it!

/*

31

 * Created by Jeffrey Shih on 2017.04.05 *
 * Copyright © 2017 Jeffrey Shih. All rights reserved. *
 */
package com.mycompany.managers;

/**
 *
 * @author Jeff
 */
import com.mycompany.entityClasses.Meeting;
import com.mycompany.entityClasses.MeetingUsers;
import com.mycompany.entityClasses.User;
import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.concurrent.TimeUnit;
import javax.ejb.EJB;
import javax.faces.application.FacesMessage;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

import org.primefaces.event.ScheduleEntryMoveEvent;
import org.primefaces.event.ScheduleEntryResizeEvent;
import org.primefaces.event.SelectEvent;
import org.primefaces.model.DefaultScheduleEvent;
import org.primefaces.model.LazyScheduleModel;
import org.primefaces.model.ScheduleEvent;
import org.primefaces.model.ScheduleModel;

@ManagedBean(name = "calendarManager")
@SessionScoped
public class CalendarManager implements Serializable {

 private ScheduleModel eventModel;

 private ScheduleModel lazyEventModel;

 private ScheduleEvent event = new DefaultScheduleEvent();

32

 @EJB
 private com.mycompany.sessionBeans.MeetingFacade meetingFacade;
 @EJB
 private com.mycompany.sessionBeans.MeetingUsersFacade meetingUsersFacade;

 private Collection<Meeting> meetingsList;

 private Meeting selectedMeeting = new Meeting();

 public Meeting getSelectedMeeting() {
 return selectedMeeting;
 }

 public void setSelectedMeeting(Meeting selectedMeeting) {
 this.selectedMeeting = selectedMeeting;
 }

 public ScheduleModel getEventModel() {
 return eventModel;
 }

 public ScheduleModel getLazyEventModel(User user) {
 System.out.print(user);
 if (lazyEventModel == null) {
 lazyEventModel = new LazyScheduleModel() {

 @Override
 public void loadEvents(Date start, Date end) {

 if (user.getMeetingCollection().isEmpty()) {
 System.out.print("no meetings");
 } else {

//
 List<MeetingUsers> muL = meetingUsersFacade.getMeetings(user);
 for (int i = 0; i < muL.size(); i++) {
 Meeting updatedM =
meetingFacade.getMeetingById(muL.get(i).getMeeting().getId());

 if (updatedM.getFinaltime() != null && updatedM.getFinaltime().length() >
0) {
 //System.out.print("Final Start Time: " + updatedM.getFinaltime());

33

 ArrayList<Date> dateObj =
meetingFacade.deserialize(updatedM.getFinaltime());
 //System.out.print("AFter deserialized: " + dateObj.get(0).toString());
 Date endTime = addHour(dateObj.get(0));
 addEvent(new DefaultScheduleEvent(updatedM.getTopic(),
dateObj.get(0), endTime));
 //System.out.print("Shouldve Added");
 }
 }
 }

 }
 };
 }
 return lazyEventModel;
 }

 private Date yearCheck(Date date) {
 Calendar cl = Calendar.getInstance();
 cl.setTime(date);
 int year = cl.get(Calendar.YEAR);
 if (year > 3000) {
 cl.add(Calendar.YEAR, -1900);
 }
 System.out.print("Year check: " + cl.getTime().toString());
 return cl.getTime();
 }

 private Date addHour(Date date) {

 Calendar cl = Calendar.getInstance();
 cl.setTime(date);
 cl.add(Calendar.HOUR, 1);
 cl.add(Calendar.DAY_OF_WEEK, -1);
 cl.add(Calendar.DATE, 1);
 int year = cl.get(Calendar.YEAR);
 if (year > 3000) {
 cl.add(Calendar.YEAR, -1900);
 }
 System.out.print("Add hour: " + cl.getTime().toString());
 return cl.getTime();

 }

34

 public ScheduleEvent getEvent() {
 return event;
 }

 public void setEvent(ScheduleEvent event) {
 this.event = event;
 }

 public void addEvent(ActionEvent actionEvent) {
 if (event.getId() == null) {
 eventModel.addEvent(event);
 } else {
 eventModel.updateEvent(event);
 }

 event = new DefaultScheduleEvent();
 }

 public void onEventSelect(SelectEvent selectEvent) {

 event = (ScheduleEvent) selectEvent.getObject();

 for (Meeting m : meetingsList) {
 if (event.getTitle().equals(m.getTopic())) {
 selectedMeeting = m;
 break;
 }
 }

 }

 public ArrayList<User> getParticipants() {
 Collection<MeetingUsers> participants = selectedMeeting.getMeetingUsersList();
 ArrayList<User> results = new ArrayList<>();
 if (participants == null || participants.size() < 1) {
 return results;
 }
 for (MeetingUsers mu : participants) {
 results.add(mu.getUser());
 }

 return results;
 }

35

 public String getSelectedParticipants() {
 String out = "";

 Collection<MeetingUsers> participants = selectedMeeting.getMeetingUsersList();
 if (participants == null || participants.size() < 1) {
 return out;
 }
 for (MeetingUsers u : participants) {
 out += u.getUser().getFirstName() + " " + u.getUser().getLastName() + ", ";

 }

 return out.substring(0, out.length() - 2);
 }

 public void onDateSelect(SelectEvent selectEvent) {

 }

 public String getTime(Date date) {
 SimpleDateFormat localDateFormat = new SimpleDateFormat("HH:mm:ss");
 String time = localDateFormat.format(date);
 return time;
 }

 public void onEventMove(ScheduleEntryMoveEvent event) {
 FacesMessage message = new FacesMessage(FacesMessage.SEVERITY_INFO,
"Event moved", "Day delta:" + event.getDayDelta() + ", Minute delta:" + event.getMinuteDelta());

 addMessage(message);
 }

 public void onEventResize(ScheduleEntryResizeEvent event) {
 FacesMessage message = new FacesMessage(FacesMessage.SEVERITY_INFO,
"Event resized", "Day delta:" + event.getDayDelta() + ", Minute delta:" +
event.getMinuteDelta());

 addMessage(message);
 }

 private void addMessage(FacesMessage message) {
 FacesContext.getCurrentInstance().addMessage(null, message);
 }
}

36

The most important part of the java code is the getLazyEventModel method which is
called by the schedule component. The method creates a single lazyEventModel if it
has not already been created and loads all the events needed. In this case, all the
events that are loaded are the meetings a user is a part of that has been finalized. The
loop takes each meeting and deserializes the String representations of the final times
and converts them into Java Date objects. An end time is also required for
DefaultScheduleEvents which are the objects that are added to lazyEventModel, so an
end time is created by processing the final time and adding an hour to it and creating it
as a new Date object. Once all the meetings are added, the lazyEventModel is returned
and rendered in the xhtml.

7.2 Utilizing Materialize CSS Library Side Nav - Alex Martin
The side nav implementation that we used from the Material CSS library. It allowed us
to allow for an improved user experience by providing additional functionality at just one
click without cluttering up the main views. We wanted to allow the user to see some of
their account information, such as name, email, and profile image as well as provide
some useful functionality such as linking to the calendar, the meetings they are hosting,
and the information on their upcoming meetings. Follow the instructions below to
implement your own side navigation menu.

1. Install Materialize, utilize the CDN repositories they host and add them inside the
siteTemplate.html file so that they can be accessed site wide.

2. Place the code snippet below into your headerTemplate.html and review the
code to understand what is going on.

37

38

When implementing the side navigation it is important to have a data-activates field on a
link that has the id of the side nav menu, in order for the materialize javascript to
properly perform the necessary functions.

7.3 Utilizing Materialize CSS Parallax - Alex Martin
Parallax is a design concept that raises the main content of a view above some images
to allow content to separate and gives some flow to the webpages. We utilize the
standard materialize parallax, but only on the bottom section of each page. Follow the
instructions below to implement your own parallax content to your webpage through
materialize.

1. Import the materialize css library through the use of CDN repositories into your
siteTemplate.html file.

2. Paste the following code into your siteTemplate file, in order to utilize the parallax
component.

39

Some key things to remember when adding parallax to your application is to ensure that
you set the parallax div to have a z-index of 0, in order to make it visible on the page.
Notice the script at the top of the snippet, this section is required in order to initialize the
JavaScript that is going to enable the scrolling speed altering between the content and
the images.

7.4 Login Filter for Members-Only Access - Patrick Gatewood
In order to restrict site access to logged-in members, we implemented a login filter. This
filter intercepts every HTTP request and only allows resources through if the user is
signed in, or is on the index, sign-in, create account, or other predetermined “public”
pages. Clicking a link to a members only page or attempting to manually enter a
members only URL will redirect the user to the sign-in page.

Step 1: New Feature Functionality Specification

Attempting to manually enter a member’s only URL or clicking a members only link will
redirect the user to the sign-in page.

40

Step 2: Packages and Java Class Files

First, create a “filters” package in order to keep your source folder organized. Create a
new file, named LoginFilter.java. Place any additional filter classes you create in this
package.

Copy and paste the documented code given below. Carefully study the code,
understand what it is doing, and learn from it!

41

/*
 * Created by Patrick Gatewood on 2017.04.24
 * Adapted from the accepted answer at:
 * http://stackoverflow.com/questions/13274279/authentication-filter-and-servlet-for-login
 *
 * Copyright © 2017 Patrick Gatewood. All rights reserved.
 */
package com.mycompany.filters;

import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

/**
 * The purpose of this filter is to prevent users who are not logged in from
 * accessing confidential website areas.
 */
public class LoginFilter implements Filter {

 /**
 * Required method override. Nothing to initialize for now
 *
 * @param filterConfig the filter's configuration
 * @throws javax.servlet.ServletException
 */
 @Override
 public void init(FilterConfig filterConfig) throws ServletException {
 }

 /**
 * Checks HTTP requests and responses and restricts access to the main site
 * to logged-in users only

42

 *
 * @param req the HTTP request sent
 * @param res the HTTP response received
 * @param chain
 * @throws java.io.IOException
 * @throws javax.servlet.ServletException
 * @see Filter#doFilter(ServletRequest, ServletResponse, FilterChain)
 */
 @Override
 public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain chain) throws IOException, ServletException {
 // Cast parameters to usable types
 HttpServletRequest request = (HttpServletRequest) req;
 HttpServletResponse response = (HttpServletResponse) res;

 // Path to the webpage requested
 String path = request.getRequestURI()
 .substring(request.getContextPath().length());

 HttpSession session = request.getSession(false);

 /* Restrict access to members-only content, but allow
 the homepage, SignIn, and resources to be loaded */
 if (path.equals("/")
 || path.endsWith(".css.xhtml")
 || path.endsWith(".js")
 || path.endsWith("index.xhtml")
 || path.endsWith("index.xhtml?faces-redirect=true")
 || path.endsWith("CreateAccount.xhtml")
 || path.endsWith("SignIn.xhtml")
 || path.endsWith("EnterUsername.xhtml")
 || path.endsWith("SecurityQuestion.xhtml")
 || path.endsWith("ResetPassword.xhtml")
 || path.contains("/resources/")
 || path.contains("js")) {
 chain.doFilter(request, response);
 } else if (session == null || session.getAttribute("username") == null) {
 response.sendRedirect(request.getContextPath() + "/SignIn.xhtml");
 } else {
 chain.doFilter(request, response);

43

 }
 }

 /**
 * @see Filter#destroy()
 */
 @Override
 public void destroy() {
 }

}

This Login Filter was adapted from the accepted answer found at:
http://stackoverflow.com/questions/13274279/authentication-filter-and-servlet-for-login.

Step 3: WEB-INF Files

Open your web.xml file and add the following lines:

 <!-- Login filter for restricted site access -->
 <filter>
 <filter-name>Login Filter</filter-name>
 <filter-class>com.mycompany.filters.LoginFilter</filter-class> <!-- Use your own
package name! -->
 </filter>
 <filter-mapping>
 <filter-name>Login Filter</filter-name>
 <url-pattern>/*</url-pattern> <!-- Filter every request -->
 </filter-mapping>

44

45

7.5 Collapsable “Card” Interface - Patrick Gatewood
Vertical screen real estate is expensive. In order to prevent extremely long web pages
and to avoid using a tabbed interface, we implemented a collapsible card interface. This
allows the user to see only the information they are interested in, and keeps vertical
screen real estate usage to a minimum.

Step 1: New Feature Functionality Specification

Meeting invitations and upcoming meetings alike will display a preview of the content
upon navigating to the My Meetings page.

46

Clicking “Respond” on an invitation expands the invitation card to show the available
dates and collapses all other open invitation cards to prevent the user from answering
multiple invitations at the same time. The “Respond” button is also disabled and hidden.

Clicking a date will expand the card further to display the available times.

Clicking “See More” on an upcoming meeting expands the card to display more
information about the meeting and disables the “See More” button.

47

Clicking “Upload Files” expands the file upload section.

Clicking “See Less” collapses the card.

48

Step 2: User Interface Development

Within an existing XHTML file to which you would like to add a collapsible panel,
implement your collapsible panel simarly to the implementation below. Carefully study
the code, understand what it is doing, and learn from it! The XHTML tags and
attributes highlighted in yellow are CRITICALLY IMPORTANT to making this
functionality work!

MeetingInvitation.xhtml

49

<?xml version="1.0" encoding="UTF-8"?>
<!--
Created by Patrick Gatewood on 2017.04.08
Copyright © 2017 Patrick Gatewood. All rights reserved.
-->
<!DOCTYPE html [
 <!ENTITY nbsp " ">
]>
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:p="http://primefaces.org/ui"
 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">

 <ui:composition>
 <!-- CSS for meetings -->
 <h:head>
 <h:outputStylesheet library="css" name="meetingStyles.css" />
 </h:head>

 <!-- Font Awesome CSS -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-
awesome/4.6.2/css/font-awesome.min.css" />

 <div id="meetingWrapper#{meetingInvitation.id}" class="card-panel green
lighten-1" align="center">
 <!-- Meeting Invitation Preview with Respond Button -->
 <h2>#{meetingInvitation.topic}</h2>
 <p style="text-align: center">#{meetingInvitation.description}</p

 <!-- Respond button clears any selected times and displays
 response choices to the user -->
 <p:commandButton action="#{userController.clearPotentialTimes()}"

actionListener="#{meetingUsersController.setSelected(accountManager.selected,
meetingInvitation)}"
 widgetVar="respondButton#{meetingInvitation.id}"
value="Respond"
 onclick="PF('respondButton#{meetingInvitation.id}').disable();

50

 PF('dayPanel#{meetingInvitation.id}').expand();
 collapseOtherInvitations('#{meetingInvitation.id}');"
 style="background: none;"
 class="btn indigo darken-4 white-text respond-button" />

 <!-- Response section: user indicates their availability -->
 <h:form enctype="multipart/form-data" class="timeform">
 <p:panel class="dayPanel green lighten-2" toggleable="true"
closable="true" toggleSpeed="500" closeSpeed="500"
collapsed="#{!meetingController.shouldHideTimeForMeeting(meetingInvitation)}"
widgetVar="dayPanel#{meetingInvitation.id}" style="border: none;padding: 0px;" >
 <h4>When can you make it?</h4>

 <!-- Can't go button -->
 <p:commandLink
actionListener="#{userController.clearPotentialTimes()}"

action="#{meetingUsersController.finalizeMeetingAvailability(userController.potentialTi
mes, accountManager.selected, meetingController.selected.ownerId.email)}"
 oncomplete="collapseOtherInvitations('-1')"
 update=":meetingInvitations :growlForm:growl"
 class="declineLink">
 <i id="declineIcon#{meetingInvitation.id}" class="fa fa-times" aria-
hidden="true"></i>
 <div class="declineText">Can't go</div>

 <p:confirm header="Confirmation"
 message="Are you sure you would like to decline this meeting
invitation?"
 icon="ui-icon-alert"/>
 </p:commandLink>

 <!-- Div that floats left in order to force #horizontalScrollArea
 to fill the content width up to #declineLine -->
 <div style="float: left;"></div>

 <p:scrollPanel class="green lighten-2"
id="horizontalScrollArea#{meetingInvitation.id}" styleClass="horizontalScrollArea"
mode="native">

51

 <!-- Get list of times for the selected meetingInvitation -->
 <ui:param name="times"
value="#{meetingController.getMeetingFacade().getTimeslotsForMeeting(meetingInvitat
ion)}" />

 <p:repeat
value="#{meetingController.getUniqueDateListForMeeting(meetingInvitation)}"
offset="0" step="1"
size="#{meetingController.getUniqueDateListForMeeting(meetingInvitation).size()}"
var="timeslot" varStatus="status">
 <!-- Clicking this link updates the collapsed time panel and displays
it -->
 <p:commandLink class="calendarLink"
 action="#{meetingController.setSelectedDate(timeslot,
component.namingContainer.parent.namingContainer.clientId, meetingInvitation)}"
 onclick="PF('timePanel#{meetingInvitation.id}').expand()"
 ajax="true"
update="#{component.namingContainer.parent.namingContainer.clientId}" >
 <time datetime="" class="icon">

#{meetingController.getDayOfWeek(timeslot.getDay())}

#{meetingController.getMonthName(timeslot.getMonth())}
 #{timeslot.getDate()}
 </time>
 </p:commandLink>
 </p:repeat>
 </p:scrollPanel>
 </p:panel> <!-- .dayPanel -->

 <!-- Available time options shown after the user selects a date -->
 <p:panel rendered="true" toggleable="true" closable="true"
 toggleSpeed="500" closeSpeed="500"

collapsed="#{!meetingController.shouldHideTimeForMeeting(meetingInvitation)}"
 widgetVar="timePanel#{meetingInvitation.id}" style="border:
none;padding: 0px;" class="green lighten-3">

 <p style="text-align: center;">Times for
#{meetingController.getSelectedDateAsString()}</p>

52

 <p style="text-align: center;">Double click to select a time.</p>

 <!-- Time selection: user indicates their availability -->
 <p:panelGrid id="timePanel#{meetingInvitation.id}" columns="4"
columnClasses="columnOne, columnTwo, columnOne, columnTwo" style="padding: 0;"
class="green lighten-5">
 <h:panelGroup id="timeGroup#{meetingInvitation.id}" >
 <ui:param name="timesForDay"
value="#{meetingController.getTimesForDay(times, meetingController.selectedDate)}"
/>
 <p:repeat value="#{timesForDay}" offset="0" step="1"
size="#{timesForDay.size()}" var="timeslot" varStatus="status">

 <!-- On/Off switch -->
 <p:commandLink id="switch#{meetingInvitation.id}"

action="#{userController.updatePotentialAvailability(timeslot)}"
 ajax="true"
 update="@form" style='text-decoration: none; padding-
bottom: 10px;'>
 <div class="green lighten-3 center">
 <label class="switch">
 <ui:fragment
rendered="#{userController.checkboxShouldBeChecked(timeslot)}">
 <input type="checkbox" checked="true"/>
 </ui:fragment>

 <ui:fragment
rendered="#{!userController.checkboxShouldBeChecked(timeslot)}">
 <input type="checkbox"/>
 </ui:fragment>
 <div class="slider round" style="height: 3em;"></div>
 </label>

 <h:outputText styleClass="onOffLabel"
value="#{meetingController.getMeetingFacade().getMeetingString(timeslot)}" />
 </div>
 </p:commandLink>
 </p:repeat>
 </h:panelGroup>

53

 </p:panelGrid>

 <!-- Submit button -->
 <p:commandButton
action="#{meetingUsersController.finalizeMeetingAvailability(userController.potentialTi
mes, accountManager.selected, meetingController.selected.ownerId.email)}"
 ajax='true'
 value="Submit all selected times"
 oncomplete="collapseOtherInvitations('-1')"
 update="upcomingMeetings, meetingInvitations, @form,
:growlForm:growl"
 style="background: none;"
 class="btn indigo darken-4 white-text respond-button" >

 <p:confirm header="Confirmation"
 message="Are you sure you would like to submit all selected
dates and times?"
 icon="ui-icon-alert" />
 </p:commandButton>

 </p:panel> <!-- .timePanel -->
 </h:form>

 </div> <!-- #meetingWrapper →

 <!-- Collapses other panels when an invitation is opened.
 This prevents the user from accepting multiple invitations
 at once and keeps the interface clean.

 NOTE: This script must be included inline because p:repeat tags
 do not put elements in the DOM in time, and this whole page is
 contained in a p:repeat. Therefore this JavaScript needs to be
 included right here. -->
 <script type="text/javascript">
 function collapseOtherInvitations(keepOpenId) {
 // Special case to prevent collapsing the panel just expanded
 if (keepOpenId === -1) {
 return;

54

 }
 // Variable declaration
 var widgets = PrimeFaces.widgets;
 var dayPanelKeepOpen = "dayPanel" + keepOpenId;
 var timePanelKeepOpen = "timePanel" + keepOpenId;
 var property;

 // Find all expanded panels
 for (property in widgets) {
 // Don't collapse the panel currently being opened
 if (property.includes(dayPanelKeepOpen)
 || property.includes(timePanelKeepOpen)) {
 continue;
 }

 // Collapse day panels
 if (property.includes("dayPanel")) {
 PF(property).collapse();
 }

 // Collapse time panels
 if (property.includes("timePanel")) {
 PF(property).collapse();
 }

 // Re-enable all other respond buttons
 if (property.includes("respondButton")) {
 if (!(property.includes(keepOpenId))) {
 PF(property).enable();
 }
 }
 }
 }
 </script>

 </ui:composition>
 </html>

55

56

7.5 Repeatable Content for Interoperability between JSF
Implementations and PrimeFaces Components - Patrick
Gatewood

In order to create a custom interface template that does not depend on existing
PrimeFaces components and allow that template to be reused for data extracted from
our SQL database, we implemented our interface template and wrapped it in the
PrimeFaces Repeat extension. This gave us complete control over our template rather
than limiting us to styling an existing PrimeFaces component such as the PrimeFaces
Datatable.

Step 1: New Feature Functionality Specification

For each meeting extracted from the database, a meeting card will be created and
displayed using our template.

Step 2: Template Development

57

To create your own template, follow the implementation below. Include the template file
you wish to repeat by placing your template within the
<ui:include src="Your-XHTML-File-To-Repeat"/> tag wrapped in a <p:repeat>.
DO NOT use the <ui:insert> component, as the <ui:insert> tag handler runs at build
time, while the <p:repeat> component is run during render time! This will result in none
of your XHTML code being inserted!

Carefully study the code, understand what it is doing, and learn from it! The
XHTML tags and attributes highlighted in yellow are CRITICALLY IMPORTANT to
making this functionality work!

MyMeetings.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!--
Created by Patrick Gatewood on 2017.03.26
Copyright © 2017 Patrick Gatewood. All rights reserved.
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:p="http://primefaces.org/ui"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:c="http://xmlns.jcp.org/jsp/jstl/core">

 <!-- Do not enter tags before the composition line since they are ignored by JSF -->

 <!-- This page is constructed based on the siteTemplate -->
 <ui:composition template="template/siteTemplate.xhtml">

 <ui:define name="title">
 <!-- Set the page title -->
 <h:outputText value="My Meetings"></h:outputText>
 </ui:define>

 <ui:define name="editableContent">
 <h:outputStylesheet library="css" name="myMeetingsStyles.css" />

58

 <h:form id="growlForm">
 <!-- Growl that shows messages to the user -->
 <p:growl id="growl" life="5000" />
 </h:form>

 <div class="main" align="center">

 <!-- Meeting Invitations Section -->
 <h1>Invitations</h1>
 <h:panelGroup id="meetingInvitations" >
 <ui:param name="meetingInvitations"
value="#{meetingController.getMeetingInvitations(accountManager.selected)}" />

 <!-- Display a message when there are no meetings to show -->
 <c:if test="#{meetingInvitations.size() == 0}" >
 You have no new meeting invitations.
 </c:if>

 <c:if test="#{meetingInvitations.size() != 0}" >
 <p:repeat value="#{meetingInvitations}" offset="0" step="1"
size="#{meetingInvitations.size()}" var="meetingInvitation" varStatus="status">
 <ui:include src="meetings/MeetingInvitation.xhtml"/>

 </p:repeat>
 </c:if>
 </h:panelGroup>

 <!-- Upcoming Meetings Section -->
 <h1>Upcoming Meetings</h1>
 <h:panelGroup id="upcomingMeetings">
 <ui:param name="upcomingMeetings"
value="#{meetingController.getUpcomingMeetings(accountManager.selected)}" />

<!-- User has no upcoming meetings -->
<c:if test="#{upcomingMeetings.size() == 0}" >

 Woo-hoo! You have no upcoming meetings.
 </c:if>

59

 <!-- Display the user's upcoming meetings, if they exist -->
 <c:if test="#{upcomingMeetings.size() != 0}" >
 <p:repeat value="#{upcomingMeetings}" offset="0" step="1"
size="#{upcomingMeetings.size()}" var="upcomingMeeting" varStatus="status">
 <ui:include src="meetings/UpcomingMeeting.xhtml"/>

 </p:repeat>
 </c:if>
 </h:panelGroup>

 <!-- Global confirmDialog to be used by all child pages -->
 <p:confirmDialog id="confirmDialogBox" widgetVar="confirmDialog"
global="true">
 <div align="center">
 <!-- The value of the first button listed below will be shown as
 highlighted (default action) when displayed -->
 <p:commandButton value="No" type="button"
 styleClass="ui-confirmdialog-no" icon="ui-icon-close" />

 <p:commandButton value="Yes" type="button"
 styleClass="ui-confirmdialog-yes" icon="ui-icon-check"
 />
 </div>
 </p:confirmDialog>

 <!-- Script for Google Maps -->
 <script async="defer"
src="https://maps.googleapis.com/maps/api/js?key=AIzaSyCX_25HBwVQYvr31
Dcz3MJUryv5Aak5okQ&callback=initMap"></script>
 </div>
 </ui:define>
 </ui:composition>
</html>

8. Conclusions
The main goal of the project was to allow users to coordinate by indicating the
availability of their schedules in order to select the most effective time for a meeting. In

60

addition, we implemented many features that makes this application one that not only
schedules meetings, but also provides users with a platform to keep track of, organize,
and plan for their meetings.

To schedule meetings, the best way to gather everyone’s availability information was to
allow meeting participants to view a selection of times provided by the meeting owner
and select the ones that work for their schedule. We alert meeting participants, via
email, that they have been invited to help schedule a meeting as soon as the meeting
owner creates it. Because the application also organizes all meetings a user has been
invited to, the user can look at his or her calendar to check for time conflicts with any
other meetings that have been finalized. The meeting owner can then check his or her
own dashboard to see the results of the invitees’ responses. If the owner decides that
enough people have responded, he or she can go on to select the final meeting time.
Having the email functionality reduces the hassle of communicating to others as an
automated email is sent as soon as a relevant action is taken by the meeting owner or
the meeting invitees. The ability to share documents and files to all users included in a
meeting allows everyone to be well prepared before a meeting occurs and even serves
as a fallback in meeting participants forget or can’t access the files from another
location at the time of the meeting.

While on the surface the application looks very sleek and simple, we found this project
to be equally challenging and rewarding. Through our combined experience of working
in teams, whether it be for school or in the professional world, all members of our team
had encountered the difficult task of attempting to schedule meetings while working with
the schedules of several busy individuals. These experiences gave us drive to create, in
our minds, the most efficient and effective way to schedule meetings. In addition to
completing the given task of scheduling a when and where for a meeting, we challenged
ourselves by adding the above functionality to make our application more robust all
aspects of planning, organizing, and holding meetings.

9. Percentages of Contribution
We hereby certify that the list of contributions and the corresponding percentages of
contribution specified below truly reflect the actual contributions of the team members.
 (Write your name as your signature)

Student Name &
Contributions

% Contributed Signature

61

Alexander Martin

1. SQL Script to
Create DB

2. SQL Script to
populate test data

3. Named Queries
for MeetingUsers

4. Implementation of
Materialize

5. Styling of
Homepage,
CRUD views,
Profile, Sign In,
Password
Recovery,
Header, Footer,
and Side
Navigation

6. General bug fixes
and code cleanup

Percentage of final

report: 40%

22% AJM

Erin Kocis

1. Took notes during
each group
meeting for the
Meeting Minutes.

2. My Meetings
Landing Page
Markup Design.
(using Balsamiq
with Patrick)

3. Implemented
Upcoming
Meetings XHTML.

4. Google Maps

24% EMK

62

functionality in
Upcoming
Meetings.

5. Populate
Upcoming
Meetings portion
of My Meetings
landing page with
real data.

6. User profile photo
functionality
(different
implementation
than tutorials).

7. Designed email
template and
implemented
automatic email
functionality.

8. Merge several
pull requests and
test teammates’
code

9. Conducted SQL
database dump
and prepared ZIP
file for Delivery to
Dr. Balci with
Patrick

Percentage of final

report: 20%

Jeffrey Shih

1. Calendar
implementation

2. Initial page setup
3. Footer links and

images that scroll

18% Jeffrey Shih

63

4. Logo designer
5. Meeting

finalization

Percentage of final
report: 20%

Jisu You

1. Meeting CRUD
2. Meeting CRUD

JSF page
3. MeetingController

development

Percentage of final
report: 0%

6% Jisu You

Patrick Gatewood

1. Create
preliminary login
services

2. Login Filter for
members-only
access

3. Developed and
implemented SQL
logic to store user
and meeting
availability
timeslots

4. Meeting
Invitations
XHTML and
backing bean
methods

5. My Meetings
Landing Page
Markup Design.

30% Patrick Gatewood

64

(using Balsamiq
with Erin)

6. Improve email
sending to send
on a background
thread

7. Implement
Meeting File
Upload

8. Upgrade
CloudDrive file
viewer to more
robust version

9. Created
MyMeetings
template

10. Implement
collapsable card-
base design

11. Register for
Google Maps API
key and
implement
Google Map

12. Redo Meeting
CRUD operations

13. Add
Autocomplete for
usernames when
creating meetings

14. Meeting Timeslot
selection

15. CSS Styling for
My Meetings

16. Merge several
pull requests and
test teammates’
code

17. Deployed
application to the

65

server computer
18. Conducted SQL

database dump
and prepared ZIP
file for Delivery to
Dr. Balci with Erin

Percentage of final

report: 20%

The Virginia Tech Honor Code is fully in effect for the above declaration.

66

11. Version Control
In order to help our team manage our source code over time, we placed our code inside
a git repository. This allowed our team to track all changes made to files, easily revert
file revisions, create devlopment branches, and maintain a clean master branch that
was ready to present at any time.

The following state machine describes how the decentralized version control system
handles file changes. The diagram was obtained under fair use from: http://nbdiff-
docs.readthedocs.io/en/latest/SRS.html#information-on-version-control-systems.

Our git repository can be found on GitHub: https://github.com/pg8wood/cloud-semester-
project

67

11. Collaborative Project Management
After completing our Requirements Specification, our team decided to practice scrum
development. We organized our development into one-week sprints, with a scrum
meeting once a week.

Each week, we discussed the modules we had developed and presented our progress
to the rest of the team. Whenever a developer finished a module, we assigned them a
new ticket from our backlog of TODO items and added a new item to the backlog.

Our issue management system of choice was Trello. You can find our project board
here: https://trello.com/b/Shhgeo2r/web-app

68

12. Meeting Report Forms

•Meeting of Project Team 4
•Date: 3.2.2017
•Location: TORG 1010
•Agenda: First meeting - Discuss project overview (features we want to build, source control,
plan for team organization)
•Names of Team Members Who Attended the Meeting:

- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You
•Names of Team Members Who were Absent: N/A
•Discussions:
 - Went over list of recommended features, determined which ones we want to focus on

- Team organization - made a team drive
- Project meeting times for the remainder of the semester

•Announcements (if any): NA
•Decisions Made:

- Weekly meeting (Wednesday - 9:00pm - Software Engineering Lab)
- Use GitHub, Trello, and Google Drive
- Features we are interested in : 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 19, 21, 22, 24,

25, 28, 29
•Items for Follow Up:

- Git repo creation - Patrick
- Google Drive setup - Erin
- Trello setup - Alex
- Brainstorm site layout before next meeting

•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4
•Date: 3.15.2017
•Location: Google Hangouts – virtual meeting
•Agenda: Discuss physical design components & divide up work for sprints
•Names of Team Members Who Attended the Meeting:

- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You
•Names of Team Members Who were Absent: N/A
•Discussions:
 - Discussed physical design components

- Discussed options for coding languages to use
- Discussed next steps and which items are the most important and fundamental to

begin the project
•Announcements (if any): NA

69

•Decisions Made:
- Use tickets on Trello to divide up work (and assigned tickets for upcoming week)
- Work in week long sprints
- Use SQL and Java on the backend

•Items for Follow Up:
- Create user class – Patrick & Erin
- Create SQL script for user and Meeting Entities – Alex & Jason
- Basic XHTML Layout / Graphics - Jeffrey

•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4
•Date: 3.22.2017
•Location: Google Hangouts – virtual meeting
•Agenda:

- Go over progress/problems from this week
- Discuss next steps
- Assign tickets to team members for next week

•Names of Team Members Who Attended the Meeting:
- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You

•Names of Team Members Who were Absent: N/A
•Discussions:
 - Next steps with splash page after logging in

- User profile
- Create a meetings template
- Web service for user information
- How to create users and meetings
- Various ways to display meetings a user is a part of

•Announcements (if any): NA
•Decisions Made:

- For this week’s sprint, focus on working on meeting object
- Use one database with multiple tables
- Want to display meetings for each user chronologically (by date)
- Cards done :

--Create SQL Script for User and Meeting Entities
--Basic XHTML Layout / Graphics

•Items for Follow Up:

- NA
•Name of the Person Taking the Minutes:
 - Erin Kocis

70

•Meeting of Project Team 4
•Date: 3.29.2017
•Location: Google Hangouts – virtual meeting
•Agenda:

- Go over progress/problems from this week
- Discuss next steps
- Assign tickets to team members for next week

•Names of Team Members Who Attended the Meeting:
- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You

•Names of Team Members Who were Absent: N/A
•Discussions:
 - Problems and progress everyone made this past week

- Primefaces Schedule component - include it on the landing page
 - has calendar, month, day, time
 - each person has a set of meeting times

- make sure it shows up on the calendar correctly
- Discuss login page

•Announcements (if any): NA
•Decisions Made:

- New meeting time will be Tuesdays at 1:00pm
- After cards have been completed, add them to “Verifying” before merging with the

master branch
 -Cards go from: Backlog -> Do this week -> In Progress -> Verifying -> Done
- Added to cards for this week:
 - JSF for Meetings - Jason
 - Create landing page - Erin & Patrick
 - View Meetings by User - Alex
 - Schedule Demo - Jeffery
- Added to cards done :

-- Mock Meetings/Users for Testing Purposes - Alex
-- Add sign up, login, and user functionality - Patrick
-- Create User Class - Erin & Patrick

•Items for Follow Up:
- NA
•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4
•Date: 4.5.2017
•Location: Google Hangouts – virtual meeting
•Agenda:

- Review items from last week’s meeting
- Prep for this week - talk about next steps and assign tickets

71

- Prepare for the PowerPoint presentation for this week
•Names of Team Members Who Attended the Meeting:

- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You (slightly late)
•Names of Team Members Who were Absent: N/A
•Discussions:
 - PowerPoint presentation structure

 - Objective
 - Work completed
 - Work in progress
 - Next steps
- Went over list of functionality options we intend to complete
- Discussed next week’s work items for each group member

•Announcements (if any): NA
•Decisions Made:

- Work on Email & Google Maps functionality next - Erin
- Continue working on current in progress items listed on Trello

•Items for Follow Up:
- NA

•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4
•Date: 4.11.2017
•Location: Google Hangouts – virtual meeting
•Agenda:

- Review items from last week’s meeting
- Prep for this week - talk about next steps and assign tickets
- Prepare for the PowerPoint presentation for this week

•Names of Team Members Who Attended the Meeting:
- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You (slightly late)

•Names of Team Members Who were Absent: N/A
•Discussions:
 - PowerPoint presentation structure - sticking to same structure as last week

 - Objective
 - Work completed
 - Work in progress
 - Next steps
- Each person presented on this week’s work
 - Jason is working on CRUD related functionality for meetings
 - Patrick and Erin used Balsamiq to create a markup of the splash page and

worked on some basic front end design for the splash page
 - Jeffery is working with the calendar, showing all of a user’s upcoming meetings
 - Alex is working on the query to get all meetings by a specific user

72

- Discussed whether or not we want to keep edit functionality for meetings - after a user
has accepted do we want to allow people to change meeting details

- Discussed next week’s work items for each group member
•Announcements (if any): NA
•Decisions Made:

- Continue work on Email & Google Maps functionality - Erin
- For subsequent meetings, have everyone add their individual slides to the PowerPoint

presentation before we meet in order to save time
- Continue working on current in progress items listed on Trello
 - Edit meeting creation (Jason)
 - Create email functionality (Erin)
 - Populate landing page with real data (Patrick & Erin)
 - Get all users for particular meeting & get all user responses for meeting (Alex)
 - Schedule demo & finish calendar functionality (Jeffery)

•Items for Follow Up:
- NA

•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4 (surprise meeting during class)
•Date: 4.13.2017
•Location: Torg 1010
•Agenda:

- Touch base with what everyone has been working on
- Everyone work independently (but have the option to ask others in the group for help)

•Names of Team Members Who Attended the Meeting:
- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You (slightly late)

•Names of Team Members Who were Absent: N/A
•Discussions:
 - Talked about what everyone has been working on, progress made, and problems we
have encountered

- Touched base regarding upcoming week’s work items for each group member
•Announcements (if any): NA
•Decisions Made:

- NA
•Items for Follow Up:

- NA
•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4
•Date: 4.18.2017

73

•Location: Google Hangouts
•Agenda:

- Touch base with what everyone has been working on / progress that has been made
- Compile and go over PowerPoint presentation for this week

•Names of Team Members Who Attended the Meeting:
- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You (slightly late)

•Names of Team Members Who were Absent: N/A
•Discussions:
 - Talked about what everyone has been working on, progress made, and problems we
have encountered

- Talked about adding work done to the PowerPoint and assigned who would talk about
which slides

- Discussed remaining components for the base functionality
 - Picking final meeting time should wrap most of it up
- Discussed some of the additional functionality components we want to start

incorporating
- Discussed upcoming week’s work items for each group member
- - Schedule Demo, Calendar Functionality & Choose/Display Best TIme (JS)
- - User Profile Functionality & Email Functionality (EK)
- - Meeting File Upload (PG)
- - Meeting Response Handler & REST Endpoints (AM)
- - Edit Meeting Creation / finish Meetings CRUD (JY)

•Announcements (if any): NA
•Decisions Made:

- Meeting_Users stores user’s and meeting’s primary key
- All meeting times will be stored as a single string and then deserialized

•Items for Follow Up:
- Majority of the group is blocked
 - Waiting on Jason to complete meeting CRUD operations in order to figure out

how to select the best date
•Name of the Person Taking the Minutes:
 - Erin Kocis

•Meeting of Project Team 4
•Date: 4.25.2017
•Location: Google Hangouts
•Agenda:

- Touch base with what everyone has been working on / progress that has been made
- Compile and go over PowerPoint presentation for this week
- Evaluate project requirements to make sure we are addressing everything

•Names of Team Members Who Attended the Meeting:

74

- Erin Kocis, Patrick Gatewood, Alex Martin, Jeffrey Shih, Jisu You
•Names of Team Members Who were Absent: N/A
•Discussions:
 - Talked about what everyone has been working on, progress made, and problems we
have encountered

- Designed and discussed this week’s PowerPoint presentation and assigned who would
talk about which slides

- Discussed some of the additional functionality components we want to start
incorporating

- Discussed some “new” items we have incorporated (login filter, calendar component)
- CSS to dress up the site - Alex will begin working on this
- Discussed upcoming week’s work items for each group member
 - Jason still working on CRUD operations

•Announcements (if any): NA
•Decisions Made:

- Instead of multiple select, add interested times as a ArrayList
- Alex will start working on CSS
- Jason will push CRUD by tonight
- Someone needs to verify Jeffery’s PR
- Patrick and Erin go to office hours to address questions about functionality

requirements
•Items for Follow Up:

- Group members blocked by unfinished meeting CRUD
 - Jason said CRUD will be done by this evening

•Name of the Person Taking the Minutes:
 - Erin Kocis

75

REFERENCES

Balci, O. (2017), “CS3984 Cloud Software Development Course Website,”
http://manta.cs.vt.edu/cs3984

GlassFish (2017), “GlassFish Application Server,” https://glassfish.java.net/

MySQL (2017), “MySQL Open Source Relational Database Management System,”
http://www.mysql.com/

NetBeans (2017), “NetBeans IDE,” https://netbeans.org/

Software Requirements Specification — NBDiff 1 documentation. (2017). Nbdiff-
docs.readthedocs.io. Retrieved 9 May 2017, from http://nbdiff-
docs.readthedocs.io/en/latest/SRS.html#information-on-version-control-systems

